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1 Introduction to constrained low-rank ma-
trix approximations

Constrained low-rank matrix approximation (CLRMA) is
becoming more and more popular because it is able to extract
pertinent information from large data sets; see, for example,
the recent survey [87]. CLRMA is equivalent to linear dimen-
sionality reduction. Given a set of n data points m; € RP
(j =1,2,...,n), the goal is to find a set of r basis vectors
up € RP (k=1,2,...,r) and the corresponding weights vy
so that for all j, m; =~ 22:1 Vkj Ug. This problem is equiv-
alent to the low-rank approximation of matrix M, with

M=[mime ... my] = [ug ug ... ugllvy va ... v, =UV,

where each column of M is a data point, each column of U
is a basis vector, and each column of V provides the coordi-
nates of the corresponding column of M in the basis U. In
other words, each column of M is approximated by a linear
combination of the columns of U.

In practice, when dealing with such models, two key
choices exist:

1. Measure of the error M —UV . Using the standard least-

squares error, |[M —UV||% = > (M- UV)ZZJ-, leads to

principal component analysis (PCA) that can be solved
by using the singular value decomposition (SVD). Sur-
prisingly, one can show that the optimization problem
in variables (U, V) has no spurious local minima (i.e.,
all local minima are global), which explains why it can
be solved efficiently despite the error being nonconvex.
Note that the resulting problem can be reformulated as
a semidefinite program (SDP) by using the Ky Fan 2-k-
Norm [29, Prop. 2.9].
If data is missing or if weights are assigned to the en-
tries of M, the problem can be cast as a weighted low-
rank matrix approximation (WLRA) problem with er-
ror >, Wi (M — UV)?; for some nonnegative weight
matrix W, where W; ; = 0 when the entry (4, j) is miss-
ing [86]. Note that if W contains entries only in {0, 1},
then the problem is also referred to as PCA with missing
data or low-rank matrix completion with noise.
WLRA is widely used for recommender systems [61] that
predict the preferences of users for a given product based
on the product’s attributes and user preferences.
If the sum of the absolute values of the entries of the
error », ;|M — UV|;; is used, we obtain yet another
variant more robust to outliers (sometimes referred to

as robust PCA [15]). It can be used, for example, for
background subtraction in video sequences where the
noise (the moving objects) is assumed to be sparse while
the background has low rank.

2. Constraints that the factors U and V should satisfy.
These constraints depend on the application at hand
and allow for meaningful interpretation of the factors.
For example, k-means' is equivalent to requiring the
factor V to have a single nonzero entry in each col-
umn that is equal to one, so that the columns of U
are cluster centroids. Another widely used variant is
sparse PCA, which requires that the factors (U and/or
V) be sparse [28, 57, 69], thus yielding a more com-
pact and easily interpretable decomposition (e.g., if V'
is sparse, each data point is the linear combination of
only a few basis elements). Imposing componentwise
nonnegativity on both factors U and V leads to non-
negative matrix factorization (NMF). For example, in
document analysis where each column of M corresponds
to a document (a vector of word counts), these nonneg-
ativity constraints allow one to interpret the columns
of the factor U as topics, and the columns of the factor
V indicate in which proportion each document discusses
each topic [64]. In this paper, we focus on this particular
variant of CLRMA.

CLRMA problems are at the heart of many fields of ap-
plied mathematics and computer science, including, statis-
tics and data analysis [56], machine learning and data
mining [30], signal and image processing [1], graph the-
ory [22], numerical linear algebra, and systems theory and
control [72]. The good news for the optimization commu-
nity is that these CLRMA models lead to a wide variety of
theoretical and algorithmic challenges for optimizers: Can
we solve these problems? Under which conditions? What is
the most appropriate model for a given application? Which
algorithm should we use in which situation? What type of
guarantees can we provide?

CLRMA problems can be formulated in the following way:

min _ ||M — UV]. (1)
UeQu,VEQy

As an introduction, below we discuss several aspects of (1).

Complexity. As soon as the norm || - || is not the Frobe-
nius norm or the feasible domain has constraints (i.e.,
Qu # RP*" or Qy # R"™*™), the problem becomes difficult
in most cases. For example, WLRA, robust PCA, NMF,
and sparse PCA are all NP hard [44, 50, 90, 74]. An active
direction of research is developing approximation algorithms
for such problems; see, for example, [26] for the norm
D 1M, 5) = UV ()15 (for p = 2, this is PCA), [79] for
WLRA, and [85] for the componentwise ¢;-norm.

Convexification. Under some conditions on the matrix M,
convexification approaches can lead to optimality guarantees.

Lk-means is the problem of finding a set of centroids uy, such that the
sum of the distances between each data point and the closest centroid
is minimized.
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When there are no constraints (Qy = RP*" Qp = R™*"),
(1) can be equivalently rewritten as

n}}n |[M — X|| such that rank(X) =r.

From X, a solution (U, V) can be obtained by factorizing X
(e.g., using the SVD). The most widely used convex models
are based on minimizing the nuclear norm of X:

min [ M~ X[+ A|X .. )

where A > 0 is a penalty parameter and || X|. =
S 6 (X) = [|o(X)|1, o(X) being the vector of singu-
lar values of X. This problem can be written as a semidefi-
nite program; see [80] and the references therein.

When the matrix M satisfies some conditions depending
on the model (in particular, M has to be close to a low-rank
matrix), the optimal solution to (2) can be guaranteed to
recover the solution of the original problem; examples include
PCA with missing data [80] and robust PCA [19, 15].

As far as we know, these approaches have two drawbacks.
First, if the input matrix M does not satisfy the required
conditions, which is often the case in practice (e.g., for
recommender systems and document classification where
the input matrix is usually not close to a low-rank matrix),
it is unclear whether the quality of the solution to (2) will
be satisfactory. Second, the number of variables is much
larger than in (1), namely, mn vs. r(m + n). For large-scale
problems, even first-order methods might be too costly.
A possible way to handle the large positive semidefinite
matrix is to (re)factor it in the SDP as the product of two
matrices; this is sometimes referred to as the Burer-Monteiro
approach [14]. In fact, in many cases, any stationary point
can be guaranteed to be a global minimum [12, 66]; see also
[65] for a survey. This is currently an active area of research:
trying to identify nonconvex problems for which optimal
solutions can be guaranteed to be computed efficiently (see
the end of the next paragraph for other examples).

Nonconvex approaches. One can tackle (1) in many ways
using standard nonlinear optimization schemes. The most
straightforward and popular way is to use a two-block co-
ordinate descent method (in particular if Qp and Qy are
convex sets since the subproblems in U and V' are convex):
0. Initialize (U, V).
1. U < X, where X solves exactly or approximately
minxcq, |M — XV]|.
2.V « Y, where Y solves exactly or approximately
argminy cq, [|M — UY|.
This simple scheme can be implemented in different ways.
The subproblems are usually not solved up to high preci-
sion; for example, a few steps of a (fast) gradient method
can be used. These methods can in general be guaran-
teed to converge to a stationary point of (1) [16]. More so-
phisticated schemes include Riemannian optimization tech-
niques [11, 89]. Many methods based on randomization have
also been developed recently; see the surveys [71, 91].

Alternating and local minimization were shown to lead to
optimal solutions under assumptions similar to those needed
for convexification-based approaches; see, for example,
[59, 55] for PCA with missing data, [2] for (a variant of)
sparse PCA, and [78] for robust PCA. Recently, [7, 3§]
showed that PCA with missing data has no spurious local
minima (under appropriate conditions).

Outline of the paper. In the rest of this paper, we focus on
a particular CLRMA problem, namely, nonnegative matrix
factorization (NMF), with || - || = || - [|%, Qu = RE"", and
Qv =RY". As opposed to other CLRMA variants (such as
robust PCA, sparse PCA, and PCA with missing data), as
far as we know, no useful convexification approach exists.
The goal of this paper is not to provide an exhaustive
survey but rather to provide a brief introduction, focusing
only on several aspects of NMF (obviously biased toward our
own interests). In particular, we address the application of
NMEF for hyperspectral imaging, the geometric interpretation
of NMF, complexity issues, algorithms, and the nonnegative
rank and its link with extended formulations of polyhedra.

2 Nonnegative Matrix Factorization
The standard NMF problem can be formulated as follows

min |M — UV||% such that U,V >0. (3)
UGRPXT‘7VER7‘><n

As mentioned in the introduction, these nonnegativity con-
straints allow interpreting the basis elements in the same
way as the data (e.g., as image, or vector of word counts)
while the nonnegativity of V' allows interpreting the weights
as activation coefficients. We describe in detail in the next
section a particular application, namely, blind hyperspectral
unmixing, where the nonnegativity of U and V has a physical
interpretation.

The nonnegativity constraints also naturally lead to sparse
factors. In fact, the first-order optimality conditions of a
problem of the type min,>o f(z) are z; > 0, V,;f(z) > 0
and V; f(x)x; = 0 for all i. Hence stationary points of (3)
are expected to have zero entries. This property of NMF en-
hances its interpretability and provides a better compression
compared with unconstrained variants.

We refer to the problem of finding an exact factorization,
that is, finding U > 0 and V' > 0 such that M = UV,
as “exact NMF.” The minimum r such that an exact NMF
exists is the nonnegative rank of M, denoted rank (M). We
have that rank(M) < rank; (M) < min(m,n) (since M =
MI = IM, where I is the identify matrix).

NMF has been used successfully in many applications; see,
for example, [25, 42] and the references therein. In the next
section we focus on one particular application, namely, blind
hyperspectral unmixing.

3 Hyperspectral Imaging

A grayscale image is an image in which the value of each
pixel is a single sample. An RGB image has three chan-
nels (red, green, and blue) and allows a color image to be
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reconstructed as it is perceived by an human eye. A hy-
perspectral image is an image for which usually each pixel
has between 100 and 200 channels, corresponding to the re-
flectance (fraction of light reflected by that pixel) at dif-
ferent wavelengths. The wavelengths measured in a hyper-
spectral image depend on the camera used and are usu-
ally chosen depending on the application at hand. The ad-
vantage of hyperspectral images is that they contain much
more information, some of it blind to the human eye,
that allows one to identify and characterize the materials
present in a scene much more precisely; see Figure 1 for
an illustration. Its numerous applications include agricul-

Figure 1: From top to bottom: (1) RGB image of four plants:
can you identify the artificial one? (2) Grayscale image at a wave-
length that is blind to the naked eye (namely, 770 nm, infrared)
and allows identifying the artificial plant (plants have a high re-
flectance at infrared wavelengths, as opposed to the artificial ma-
terial). (3) Analysis of the image allows finding a small target,
a LEGO figure within the plants. Source: sciencenordic.com,
Photo: Torbjgrn Skauli, FFI.

ture, eye care, food processing, mineralogy, surveillance,
physics, astronomy, chemical imaging, and environmen-
tal science; see, for example, https://en.wikipedia.org/
wiki/Hyperspectral_imaging or http://sciencenordic.
com/lengthy-can-do-list-colour-camera.

Assume a scene is being imaged by a hyperspectral imager
using p wavelengths (that is, p channels) and n pixels. Let us
construct the matrix M € RY*™ such that M (i, j) is the re-
flectance of the jth pixel at the ith wavelength. Each column
of M therefore corresponds to the so-called spectral signature
of a pixel, while each row corresponds to a vectorized image

at a given wavelength. Given such an image, an important
goal in practice is to (1) identify the constitutive materials
present in the image, called endmembers (e.g., grass, trees,
road surfaces, roof tops) and (2) classify the pixels accord-
ingly, that is, identify which pixels contain which materials
and in which quantity. In fact, the resolution of most hy-
perspectral images is low, and hence most pixels will contain
several materials. If a library or dictionary of spectral signa-
tures of materials present in the image is not available, this
problem is referred to as blind hyperspectral unmixing (blind
HU): the goal is to identify the endmembers and quantify the
abundances of the endmembers in each pixel.

The simplest and most popular model is the linear mixing
model (LMM). It assumes that the spectral signature of a
pixel equals the weighted linear combination of the spectral
signatures of the endmembers it contains, where the weight
is given by the abundances. Physically, the reflectance of a
pixel will be proportional to the materials it contains: for
example, if a pixel contains 30% of aluminum and 70% of
copper, its spectral signature will be equal to 0.3 times the
spectral signature of the aluminum plus 0.7 times the spec-
tral signature of the copper. In practice, this model is only
approximate because of imperfect conditions (measurement
noise, light reflecting off several times before being measured,
atmospheric distortion, etc.). We refer the reader to [8, 70]
for recent surveys on (blind) HU techniques and to [84] for
an introduction to hyperspectral imaging.

If we use the LMM and assume that the image contains
r endmembers whose spectral signatures are given by the
columns of the matrix U € R"™", we have for all j

M(:,5) =Y oU( k) = UV(:, ),
k=1

where vp; > 0 is the abundance of the kth endmember in
the jth pixel. Therefore, blind HU boils down to the NMF
of matrix M; see Figure 2 for an illustration.

UG1) UG2) UGL3)

V(D)
.1

Figure 2: Illustration of the decomposition of a hyperspectral
image with three endmembers [70]. On the left, the hyperspec-
tral image M; in the middle, the spectral signatures of the three
endmembers as the columns of matrix U; on the right, the abun-
dances of each material in each pixel (referred to as the abundance
maps).

Using a standard NMF algorithm, that is, an algorithm
that tries to solve (3), will in general not lead to the
sought decomposition. The reason is that the solution of
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NMF is highly nonunique, as discussed later. In practice, a
meaningful solution is achieved usually by using additional
constraints/penalty terms, including: the sum-to-one con-
straints on the abundances (3, _, vi; = 1Vj), sparsity of V/
(because most pixels contain only a few endmembers), piece-
wise smoothness of the columns of U (since they correspond
to spectral signatures), and spatial coherence of the rows of
V' (because neighboring pixels are more likely to contain the
same endmembers). Numerous constrained variants of NMF
exist that we do not discuss here; see, for example, [25, 42]
and the references therein.

4 Geometry and Uniqueness

NMF has a nice geometric interpretation, which is crucial
to consider in order to understand the nonuniqueness of the
solutions. As discussed subsequently, it also allows one to
develop efficient algorithms and is closely related to the ex-
tended formulations of polyhedra.

Let us consider the exact case, that is, M = UV. Without
loss of generality, (i) the zero columns of M and U can be
removed, and (ii) the columns of M and U can be normalized
so that the entries of each column sum to one:

MD,}! =UDy'DyV Dy},

where Dy; and Dy are diagonal matrices with Dps(j,5) =
1M, 5)|l1 and Dy (4,7) = [|U(:, 4)|l1, respectively. Since we
have M(:,5) =Y ;_, U(:,k)V(k,j) = UV (s, j), this normal-
ization implies that the columns of V' also have their entries
summing to one, that is, ||V (:,j)||1 = 1 for all j. Thus that,
after normalization, the columns of M belong to the convex
hull of the columns of U:

M(:,j) € conv(U) C AP ={x e RP|x >0, |||, =1} Vy,

where conv(U) = {Uz|xz > 0,||z||s = 1}. Therefore, the
exact NMF problem is equivalent to finding a polytope,
conv(U), nested between two given polytopes, conv(M) and
the unit simplex AP. The dimension of the inner polytope,
conv(M), is rank(M) — 1, while the dimension of the outer
polytope, AP, is p— 1. The dimension of the nested polytope
conv(U) is not known in advance. When the three poly-
topes (inner, nested, and outer) have the same dimension,
this problem is well known in computational geometry and
is referred to as the nested polytope problem (NPP) [27].

If rank(M) = rank(U), the column spaces of M and U
must coincide, and the outer polytope can be restricted to
AP N col(M), in which case the inner, nested, and outer
polytopes have the same dimension. If we impose explic-
itly this additional constraint (rank(M) = rank(U)) on the
exact NMF problem, we can prove that NPP and this re-
stricted variant of exact NMF are equivalent, that is, they
can be reduced to one another [46, 20].

To illustrate, we present a simple example with nested
hexagons; this is similar to the example presented in [76].

Let a > 1, and let M, be the matrix

1 a 2a —1 2a-—1 a 1
1 1 a 20 —1 2a-—1 a
1 a 1 1 a 2¢ —1 2a-1
al|l 2a-1 a 1 1 a 2a — 1
20 —1 2a-—1 a 1 1 a
a 20—1 2a-—1 a 1 1

(4)
The restricted exact NMF problem for M, involves two
nested hexagons (recall that we restrict the polytopes to be
in the intersection between the column space of M, and AP,
which has dimension 2 since rank(M,) = 3). Each facet of
the outer polytope corresponds to a facet of the nonnegative
orthant, that is, to a nonnegativity constraint. The inner
hexagon is smaller than the outer one with a ratio of %

For a = 2, the inner hexagon is twice as small as the
outer one, and we can fit a triangle between the two so
that rank(M,) = 3; see Figure 3 (top). For any a > 2,
rank (M,) > 4 because no triangle can fit between the two
hexagons. For a = 3, the inner hexagon is 2/3 smaller than
the outer one, and we can fit a rectangle between the two
and rank; (M,) = 4; see Figure 3 (bottom). This implies
that rank (M,) =4 for all 2 < a < 3.

For any a > 3, rank, (M,) = 5. Surprisingly, the non-
negative rank of M, is always no more than 5 (even when a
tends to infinity, in which case the inner and outer hexagons
coincide) because there exists a three-dimensional polytope
within AS with 5 vertices that contains the outer polytope;
see Figure 4, which corresponds to the factorization

012 2 1 0
001 2 2 1
. 1001 2 2
M= dimesiecMa=1 o 1 o (o 1 2
2210 0 1
1 22100
= UV (5)
L o010 000110
2.0 0 0 1
1 10000
1 010 0
= 10001 2|,
0110 0
012 10 0
02 001 00100 1
0101 0

where rank(U) = 4, and hence conv(U) has dimension 3.

This example illustrates other interesting properties of

NMEF:

e NMF does not in general have a unique solution (up to
scaling and permutation of the rank-one factors). For
example, for a = 2 (Figure 3, top), four triangles can
be fit between the two polytopes (the one shown on
the figure, its rotation by 60 degrees, and two trian-
gles whose vertices are three nonadjacent vertices of the
outer hexagon). For 1 < a < 2, this would be even
worse since there would be an infinite number of solu-
tions. For this reason, practitioners often add additional
constraints to the NMF model to try to identify the most
meaningful solution to their problem (such as sparsity,
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2
-+-conv(U)
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_e_conv(Ma)
-+-conv(U)
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Figure 3: NPP problem corresponding to the exact NMF of the
matrix from (4), restricted to the column space of M: (top) the
case a = 2; (bottom) a = 3.

- —*;7——77,_,77_777 —'—EEEDXI(MUI}V A%
- ’4’}/ corv(U) mcol(U) n A°

-o- col(U)m A8

Figure 4: NPP solution corresponding to the exact NMF of
the matrix from (5), restricted to the column space of U. It
corresponds to the matrix M, from (4) when a — oco.

as discussed earlier); see, for example, [63, 40, 54] for
more details on the uniqueness of NMF.

e The nonnegative rank can increase only in the neighbor-
hood of a given matrix; that is, the nonnegative rank is
upper semicontinuous [10, Th.3.1]:

If P is a nonnegative matrix, without zero
columns and with rank(P) = r, then there
exists a ball B(P,¢€) centered at P and of ra-

dius € > 0 such that rank, (N) > r for all
N € B(P,e).

5 Complexity

Given a nonnegative matrix M, checking whether
rank(M) = ranky (M) = r is NP hard: unless P = NP,
there is no polynomial time algorithm in m, n and r for this
problem [90]. If r is fixed, however, there is a polynomial
time algorithm running in O((pn)TQ) [5, 75]. The argument
is based on quantifier elimination theory (in particular the
fact that checking whether a system of ¢ equations in n vari-
ables up to degree d can be solved in time polynomial in ¢
and d). Unfortunately, as far as we know, this cannot be used
in practice, even for small matrices (e.g., checking whether a
4-by-4 matrix has nonnegative rank 3 seems already imprac-
tical with current solvers). Developing an effective code for
exact NMF for small matrices is an important direction for
further research. Note that we have developed a code based
on heuristics that allows solving exact NMF for matrices up
to a few dozen rows and columns (although our code comes
with no guarantee) [88].

More recently, Shitov [83] and independently Chistikov et
al. [21] answered an important open problem showing that
the nonnegative rank over the reals might be different from
the nonnegative rank over the rationals, implying that the
nonnegative rank computation is not in NP since the size of
the output is not bounded by the size of the input.

6 Algorithms

In this section, we briefly describe the two main classes of
NMF algorithms. As mentioned in the introduction, there
does not exist, to the best of our knowledge, a successful
convexification approach for NMF, as opposed to other low-
rank models. Note, however, that there does exist a con-
vexification approach to compute lower bounds for the non-
negative rank [35]. An explanation is that we cannot work
directly with the low-rank approximation X = UV and use
the nuclear norm of X, because even if we were given the
best nonnegative approximation X of nonnegative rank r for
M, in general recovering the exact NMF (U, V) of X would
be difficult. Writing directly a convexification in variables
(U,V) seems difficult (for rank higher than one?) because
of the symmetry of the problem (permuting columns of U
and rows of V accordingly provides an equivalent solution).
Breaking this symmetry seems nontrivial; see [39, pp. 146-
148] for a discussion and a tentative SDP formulation. This
is an interesting direction for further research.

6.1 Standard nonlinear optimization schemes

As for CLRMA problems, most NMF algorithms use a two-
block coordinate descent scheme:
0. Initialize (U,V) > 0.

2Note that the rank-one NMF problem is equivalent to the rank-
one unconstrained problem since for any rank-one solution uv”, one
can easily check that |u||v|T is a solution with lower objective function
value. This also follows from the Perron-Frobenius and Eckart-Young

theorems.
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1. U + X, where X solves exactly or approximately
minxzo HM - XV”F .
2.V « Y, where Y solves exactly or approximately
argminy~g [|[M - UY||F .
Note that the subproblems to be solved are so-called non-
negative least squares (NNLS). Because NMF is NP hard,
these algorithms can only guarantee convergence (usually to
a first-order stationary point).
The most well-known algorithm for NMF is the multiplica-
tive updates, namely,
[MVT]
U Ue grppay

[UTM]
V«Vo 7[UTUV]’

where o (resp. %) is the componentwise product (resp. divi-
sion) between two matrices. It is extremely popular because
of its simplicity and because it was proposed in the paper
of Lee and Seung [64] that launched the research on NMF.
However, it converges slowly; it cannot modify zero entries;
and it is not guaranteed to converge to a stationary point.
Note that it can be interpreted as a rescaled gradient descent;
see, for example, [42].

Methods that try to solve the subproblems exactly are
referred to as alternating nonnegative least squares; among
these, active set methods seem to be the most efficient, and
dedicated codes have been implemented by Haesun Park and
collaborators; see [60] and the references therein.

In practice, a method that seems to work extremely well
is to apply a few steps of coordinate descent on the NNLS
subproblems: the subblocks are the columns of U and the
rows of V' [24, 45]—the reason is that the subproblems can
be solved in closed form. In fact, the optimal kth column of
U (all other variables being fixed) is given by

arg min Ry —U(:, k)V(k, )||I% = max (0

RiV (k, )T
U(:,k)>0 ’

" IV(E, )3

for Ry, = M—Zﬁék U(:,7)V(4,:), and similarly by symmetry
for the kth row of V.

Many other approaches can be applied to the NNLS
subproblems (e.g., projected gradient method [67],
fast/accelerated gradient method (Nesterov’s method) [53],
and Newton-like method [23]).

6.2 Separable NMF

Although they usually provide satisfactory results in prac-
tice, the methods described in the preceding section do not
come with any guarantee. In their paper on the complexity
of NMF, Arora et al. [5] also identify a subclass of matrices
for which the NMF problem is much easier. These are the
so-called separable matrices defined as follows.

Definition 1. A matriz M is separable if there exists a sub-
set K of r of its columns with r = rank, (M) and a nonneg-
ative matriz V' such that M = M(:, K)V.

This requires each column of the basis matrix U in an
NMF decomposition to be present in the input matrix M.

Equivalently, this requires the matrix V in an NMF decom-
position to contain the identity matrix as a submatrix. The
separable NMF problem is the problem to identify the sub-
set K (in the noisy case, this subset should be such that
miny ¢ | M — M(:, K)V| is minimized).

Although this condition is strong, it makes sense in several
applications, for example the following.

e Document classification: for each topic, there is a “pure”

word used only by that topic (an “anchor” word) [4].

e Time-resolved Raman spectra analysis: each substance
has a peak in its spectrum while the other spectra are
(close to) zero [68].

e Blind hyperspectral unmixing: for each endmember,
there exists a pixel that contains only that endmem-
ber. This is the so-called pure-pixel assumption that
has been used since the 1990s in that community.

Other applications include video summarization [31] and
foreground-background separation [62].

Geometrically, in the exact case and after normalization
of the columns of X and U, the separability assumption is
equivalent to having conv(U) = conv(M). Therefore, the so-
called separable NMF problem reduces to identify the ver-
tices of the convex hull of the columns of M. This is a rela-
tively easy geometric problem. It becomes tricky when noise
is added to the separable matrix, and many recent works
have tried to quantify the level of noise that one can tolerate
and still be able to recover the vertices, up to some error.

Geometric algorithms

Most algorithms for separable NMF are based on the geo-
metric interpretation, many being developed within the blind
HU community (sometimes referred to as pure-pixel search
algorithms). Only recently, however, has robustness to noise
of these algorithms been analyzed.

One of the simplest algorithm, often referred to as the suc-
cessive projection algorithm, is closely related to the modi-
fied Gram-Schmidt algorithm with column pivoting and has
been discovered several times [3, 81, 18]; see the discussion
in [70]. Over a polytope, a strongly convex function (such
as the ¢ norm) is always maximized at a vertex: this can
be used to identify a vertex, that is, a column of U (recall
that we assume that the columns of M are normalized so
that conv(U) = conv(M) under the separability assump-
tion). Once a column of U has been identified, one can
project all columns of M onto the orthogonal complement
of that column (so that this particular column projects onto
0): this amounts to applying a linear transformation to the
polytope. If U is full rank (meaning the polytope is a sim-
plex, which is the case usually in practice), then the other
vertices do not project onto 0, and one can use these two
steps recursively. This approach is a greedy method to iden-
tify a subset of the columns with maximum volume [17, 18].
This algorithm was proved to be robust to noise [49] and can
be made more robust to noise by using strategies such as

e applying dimensionality reduction, such as PCA, to the

columns of M in order to filter the noise [77];
e using a preconditioning based on minimum-volume el-
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lipsoid [43, 73];

e going over the identified vertices (once r vertices have
been identified) to check whether they still maximize
the strongly convex function once projected onto the
orthogonal complement of the other vertices (otherwise,
they are replaced, increasing the volume of the identified
vertices) [4]; and

e taking into account the nonnegativity constraints in the
projection step [41].

We refer the reader to [8, 70] for surveys on these ap-
proaches. Most geometric approaches for separable NMF are
computationally cheap. Usually, however, they are sensitive
to outliers.

Convex models

If M is separable, there exist an index set IC of size r and
a nonnegative matrix V' such that M = M(:,K)V. Equiva-
lently, there exists an n-by-n nonnegative matrix X with r
nonzero rows such that M = M X with X (K,:) = V. Solving
separable NMF can therefore be formulated as

min || X |lrow,0  such that M = M X,

X>0
where || X ||row,0 counts the number of nonzero rows of X.
A standard convexification approach is to use the ¢; norm,
replacing || X|row,0 with D1, | X (4,:)||x for some k; for ex-
ample, [31] uses k = oo and [32] uses k = 2.

If the columns of M are normalized, the entries of V are
bounded above by one (since the columns of U are vertices),
and another formulation for separable NMF is obtained:

miny>o | diag(X)|lo
such that M = MX and X(i,7) < X(4,4) <1 Vi,j.

Because on each row the diagonal entry has to be the largest
and because the goal is to minimize the number of nonzero
entries of the diagonal of X, the optimal solution will contain
r nonzero diagonal entries and hence r nonzero rows. (Note
that requiring the diagonal entries of X to be binary would
allow one to model this problem exactly by using mixed-
integer linear programming.) Using the ¢; norm, we get an-
other convex model (proposed in [9] and improved in [47]):

minys>g trace(X)
such that M = MX and X (i,5) < X(4,4) <1 Vi, j,

where trace(X) is equal to || diag(X)]||; since X is nonneg-
ative. In practice, when noise is present, the equality term
M = MX is replaced with | M — M X]|| < ¢ for some appro-
priate norm (typically the ¢1, ¢5, or Frobenius norm) or is
added in the objective function as a penalty.

The two models presented above turn out to be essentially
equivalent [48]. The main drawback is the computational
cost, since these models have n? variables. For example, in
hyperspectral imaging, n is the number of pixels and is typ-
ically on the order of millions; hence, solving these problems
is challenging (if not impractical). A natural approach is
therefore to first select a subset of good candidates among
the columns of M (e.g., using geometric algorithms) and then

optimize only over this subset of the rows of X [32, 48]. The
main advantage of this approach is that the resulting models
are provably the most robust for separable NMF [47]. In-
tuitively, the reason is not only that the model focuses in
identifying, for example, a subset of columns with large vol-
ume but also that it requires all the data points to be well
approximated with the selected vertices (since ||M — MX||
should be small). For this reason, they are also much less
sensitive to outliers than are most geometric approaches.

7 Nonnegative Rank and Extended Formu-
lations

We now describe the link between extended formulations of
polyhedra and NMF'. This is closely related to the geometric
interpretation of NMF described earlier.

Let P be a polytope

P={xecR"|b —A(i,:)x >0 for 1 <i<p},

and let (wq, -+, wy,) be its vertices. Let Sp be the p-by-n

slack matrix of P defined as follows:
S’p(i,j):bi—A(i,Z)w]‘ 1§i§p,1§j§n.

An extended formulation of P is a higher-dimensional poly-

hedron @ C R¥*P that (linearly) projects onto P. The min-

imum number of facets (that is, inequalities) of such a poly-

tope is called the extension complexity, xp(P), of P.

Theorem 1. (Yannakakis, [92]). Let Sp be the slack matriz
of the polytope P. Then, rank, (Sp) = zp(P).

Let us just show that xp(P) < rank,(Sp), because it is
elegant and straightforward. Given P = {z € R¥ | b —
Az > 0}, any exact NMF of Sp = UV with U > 0 and
V' > 0 provides an explicit extended formulation (with some
redundant equalities) of P:

Q={(z,y) | b— Az =Uy and y > 0}.

In fact, let us show that Q, = {z|Jy s.t. (z,y) € Q} = P.
We have Q, C P since U > 0 and y > 0; hence
b— Az = Uy > 0 for all (x,y) € Q. We have P C Q,
because all vertices of P belong to @,: by construction,
(w;, V(:,75)) € Q since Sp(:,j) = b— Aw; = UV(:,j) and
V(,j)>0.

Example. The extension complexity of the regular n-
polygons is O(logy(n)) [37]. This result can be used to
approximate a second-order cone program with a linear
program [6]. In particular, we have seen that the extension
complexity of the regular hexagon is 5; see Equation (5) and
Figure 4.

Recent results. Several recent important results for under-
standing the limits of linear programming for solving combi-
natorial problems are based on Theorem 1 and on construct-
ing lower bounds for the nonnegative rank, usually based on
the sparsity pattern of the slack matrix [36]; see [58] for a
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survey. In particular, Rothvof3 showed recently that the pre-
fect matching problem cannot be written with polynomially
many constraints [82].
These ideas can be generalized in two ways:
e To characterize the size of approximate extended formu-
lations (for a given precision) [13].
e To any convex cone [51], which leads to other CLRMA
problems. For example, for the cone of positive semidefi-
nite (PSD) matrices, the rows of U and the columns of V
are required to be vectorized PSD matrices. The small-
est PSD extension of a given set (e.g., a polyhedron) is
equal to the so-called PSD rank of its slack matrix; see
the recent survey [34]. (Note that for non-polyhedral
sets, the slack matrix is infinite since the number of ex-
treme points and facets is not finite.)
These ideas, for example, recently allowed Hamza Fawzi to
prove that the PSD cone cannot be represented using the
second-order cone [33]; the proof relies on the fact that the
second-order cone rank of the cone of 3-by-3 PSD matrices
is infinite.

8 Conclusion

In this paper, we have introduced the NMF problem and dis-
cussed several of its aspects. The opportunity for meaningful
interpretations is the main reason why NMF became so pop-
ular and has been used in many applications. NMF is tightly
connected with difficult geometric problems; hence develop-
ing fast and reliable algorithms is a challenge. Although
important challenges remain to be tackled (e.g., developing
exact algorithms for small-scale problems), even more chal-
lenges exist in generalizations of NMF'. In particular, we men-
tioned cone factorizations (such as the PSD factorization and
its symmetric variant [52]), which are more recent problems
and have not been explored to their full extent.
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1 Book Announcements
1.1 MATLAB Guide, Third Edition

By Desmond J. Higham and Nicholas
J. Higham

Publisher: SIAM

ISBN: 978-1-611974-65-2, xxvi + 476 pages
Published: December 2016

http: //bookstore. stam. org/0T150/

MATLAB
Quide

ABOUT THE BOOK: MATLAB is an interactive system for
numerical computation that is widely used for teaching and
research in industry and academia. It provides a modern pro-
gramming language and problem solving environment, with
powerful data structures, customizable graphics, and easy-
to-use editing and debugging tools.

1.2 Data Assimilation: Methods, Algorithms,
and Applications

By Mark Asch, Marc Bocquet, and
Maélle Nodet
Publisher: SIAM
Series: Fundamentals of Algorithms, Vol. 11
vore e SO ISBN: 978-1-611974-53-9, xviii + 306 pages
e Published: December 2016

http: //bookstore. stam. orq/FA11/

Data Assimilation
Methods, Algorithms,
and Applications

ABOUT THE BOOK: Data assimilation is an approach that
combines observations and model output, with the objective
of improving the latter. This book places data assimilation
into the broader context of inverse problems and the theory,
methods, and algorithms that are used for their solution.
It provides a framework for, and insight into, the inverse
problem nature of data assimilation, emphasizing “why” and
not just “how.” Methods and diagnostics are emphasized,
enabling readers to readily apply them to their own field of
study.

Chair’s Column

This will be my final column as your Chair and I wanted
to recap some of our recent accomplishments. SIAG/OPT
continues to be the third largest STAG within SIAM with
1172 members as of last year. I was happy to see our student
numbers rebound from 2014 and we have added 189 new
student members who now account for approximately 49%
of our membership.

In the last column we talked about the upcoming elections
and I'm happy to report who our new officers will be. Tamas
Terlaky was elected as the new Chair and Andreas Waechter
will be joining him as the new Vice Chair. Michael Friedlan-
der will return as the Program Director for the SIAG. Finally,
James Luedtke was elected as the SIAG Secretary/Treasurer.
I want to congratulate all four on their election and I hope
they will find their positions as rewarding as I have. I also
wanted to thank everybody who agreed to run for office, all
of whom deserve our deep gratitude.

Planning continues for our triennial conference, which will
be held in Vancouver, British Columbia on May 22-25, 2017.
From the looks of it, it is shaping up to be one of the biggest
and best conferences ever. We had 130 minisymposia sub-
mitted, which is 12 more than in OP14 and in total we will
have over 156 sessions total. We are in the final stages of
scheduling the program and by the time you read this col-
umn, it will hopefully be out. I’'m really looking forward to
being there.

As a quick reminder, the conference will feature two mini-
tutorials, both of which I encourage you to check out. The
first is on Stochastic Optimization for Machine Learning, or-
ganized by Francis Bach and Mark Schmidt. The second will
be on Optimal Power Flow and is being organized by Alper
Atamturk and Daniel Bienstock.

Finally, I would like to add my sincerest thanks to the en-
tire STAG/OPT membership for allowing me the great privi-
lege of serving as your Chair. It has been an incredible three
years and I have enjoyed every minute of it.

See you in Vancouver!

Juan Meza, SIAG/OPT Chair

School of Natural Sciences, University of California,
Merced, Merced, CA 95343, USA, jcmeza@ucmerced.edu,
http://bit.ly/IG8HUxO
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